

Wind shear controls on mature MCSs: role of entrainment and cold pools

Ben Maybee⁽¹⁾, John Marsham⁽¹⁾, Conni Klein⁽²⁾, Doug Parker^(3,4), Emma Barton^(2,5), Chris Taylor^(2,5), Huw Lewis⁽⁶⁾, Claudio Sanchez⁽⁶⁾, Richard W Jones⁽⁶⁾, James Warner⁽⁶⁾, James Bassford⁽¹⁾ & Paul Field^(1,6)

∠ b.w.maybee@leeds.ac.uk

- 1) School of Earth and Environment, University of Leeds
- 2) Centre for Ecology and Hydrology (CEH), Wallingford
- 3) NCAS, University of Leeds
- 4) NORCE Norwegian Research Centre AS, Bergen
- 5) National Centre for Earth Observation, Wallingford
- 6) Met Office, Exeter

Mesoscale Convective Systems (MCSs) contribute over 50% of tropical rainfall.

Roca et al, J.Clim 2014; Feng et al, GRL 2023

→ accurate simulation is a key test of convectionpermitting models. Requires understanding their physics.

LETTER

Taylor et al, Nature 2017

doi:10.1038/nature22069

Frequency of extreme Sahelian storms tripled since 1982 in satellite observations

Christopher M. Taylor^{1,2}, Danijel Belušić^{1,3}, Françoise Guichard⁴, Douglas J. Parker⁵, Théo Vischel⁶, Olivier Bock⁷, Phil P. Harris^{1,2}, Serge Janicot⁸, Cornelia Klein¹ & Gérémy Panthou⁶

"We argue that Saharan warming intensifies convection within Sahelian MCSs through increased wind shear"

Problem: CP models can fail to capture the response of MCS rainfall to shear - Senior *et al*, *BAMS* 2021

Met Office **k-scale** project: hierarchy of new summer and winter <u>40 day</u> kilometre scale model runs, covering global to regional domains, using latest MetUM configurations.

In this study:

- **Trop5-exp*:** <u>CP</u> cyclic tropical channel (CTC) ~5km, 40 days.
- **Trop5-param*:** CTC with parameterised convection.
- LAM2.2*: CP regional model, 2.2km, 40 days.
- **CP4-Af** previous generation CP regional model: 4.5km, 10 years.
- **OBS** <u>20 years</u> Meteosat brightness temps + GPM-IMERGv06B HQ + ERA5

Main methods: detect MCSs hourly from 16 – 21UTC, West Africa. Sample precursor 12UTC environmental fields at storm location.

MCS max rainfall increases with shear

CP4-Af does not show a rainfall-shear response.

Senior et al, BAMS 2021

Strong response to shear found in current CP models b) (Trop5-exp, LAM2.2).

→ extends to many key MCS characteristics.

MetUM MCSs too sensitive too environmental moisture **MCSMIP**, Feng *et al, in rev.*

Rain/shear scalings:

T5-param: $\delta / \delta_{OBS} = 0.343$

T5-exp: $\delta / \delta_{OBS} = 2.159$

Lam2.2: $\delta / \delta_{OBS} = 1.063$

CP4-Af: $\delta / \delta_{OBS} = 0.203$

Entrainment scalings

Idealised MCS cores are larger in high low-level shear environments, and subsequently show decreased entrainment. Mulholland et al, JAS 2021

Dynamical impact on rainfall: Abramian et al, JAMES 2023. Negative thermodynamic scaling: Becker & Hohenegger, MWR 2021.

Diagnose in our CP models via proxies for bulk entrainment ε :

Mulholland et al, JAS 2021:

PT concentration (y axis; %) versus 4–7-h average contiguous $5-10 \,\mathrm{km} \,\mathrm{AGL} \,\mathrm{core} \,\mathrm{updraft} \,\mathrm{area} \,(x \,\mathrm{axis}; \,\mathrm{km}^2)$. The green line is now

$$\varepsilon \sim \uparrow w_{eff}$$
 W_{eff} W_{eff}

Entrainment decreases with shear

Current-generation CP models show environmental controls on entrainment; param and CP4 do not.

Role of cold pools?

RAL3 physics includes two-moment **CASIM microphysics** scheme → key role in forming cold pools. Field *et al*, *QJRMS* 2023

Target role via sensitivity expt:

• Control: LAM2.2

 RainEvapOff: control w. modified microphysics – no evaporation from <u>rainfall</u>.
[Conv. permitting, 40 days, 2.2km]

→ Cold pools suppressed in RainEvapOff eg Grant et al, JAS 2018; Trier et al, JAS 2011

Track full MCS lifecycles with simpleTrack algorithm Stein *et al*, *MWR* 2014. **Restrict to Sahel.**

Cold pools don't explain shear response

MCS mean rainfall + upscale impacts

MCS bulk rainfall observed to depend on environmental conditions – Chen et al, GRL 2023.

→ new CP models show too stronger positive influence of shear; CP4-Af shows *negative* control. Stronger relationship with TCW.

Distribution of % bias of MCS mean rainfall anomalies vs OBS is explained by shear (zonal correlations):

12Z mean shear r=0.26 T5-param: 12Z mean r=-0.57(0.04) **TCW** CP4-Af:

- Current generation convection-permitting MetUM configurations capture response of MCSs to moisture and shear in West Africa.
- Strong shear gives larger cores, reduced entrainment and greater maximum and mean rainfall.
- Shear response has upscale impacts through control of zonal distribution of biases in storm mean rainfall and heating.
 - > Incorrect MCS shear responses can cause significant upscale errors.
- RainEvapOff experiment suppressing cold pools has surprisingly little effect on MCS rainfall-shear response, MCS propagation and MCS diurnal cycle.
 - ➤ Enhanced large-scale convergence facilitates overnight propagation.

Next steps:

- Quantify how well theoretical models of MCS dynamics explain CP-model results.
- Land-atmosphere interactions: what surface scales are important for MCS dynamics?

